Hydrodynamic Modeling and Design of Robotic Fish using Slender Body Theory
نویسندگان
چکیده
منابع مشابه
Modeling, Design and Control of Gliding Robotic Fish
MODELING, DESIGN AND CONTROL OF GLIDING ROBOTIC FISH By Feitian Zhang Autonomous underwater robots have been studied by researchers for the past half century. In particular, for the past two decades, due to the increasing demand for environmental sustainability, significant attention has been paid to aquatic environmental monitoring using autonomous underwater robots. In this dissertation, a ne...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Computing Flows Around Microorganisms: Slender-Body Theory and Beyond
We present the mathematical framework that governs the interaction of a forcegenerating microorganism with a surrounding viscous fluid. We review slender-body theories that have been used to study flagellar motility, along with the method of regularized Stokeslets. We investigate the role of a dinoflagellate transverse flagellum as well as the flow structures near a choanoflagellate.
متن کاملExperimental verification of an Oseen flow slender body theory
Consider uniform flow past four slender bodies with elliptical cross-section of constant ellipticity along the length of 0, 0.125, 0.25 and 0.375, respectively, for each body. Here, ellipticity is defined as the ratio of the semiminor axis of the ellipse to the semimajor axis. The bodies have a pointed nose which gradually increases in cross-section with a radius of curvature 419mm to a mid-sec...
متن کاملHydrodynamic Experimental Investigation on Efficient Swimming of Robotic Fish Using Self-propelled Method
Efficient swimming of biologically carangiform robotic fish has been investigated by using a novel experimental method. The laboratory robotic fish model, which follows an exact replica of Saithe, is self-propelled on a servo towing system. The forward towing speed is determined by the fluid force acting on the robotic fish, as the fish undulates its body in the water. The importance of the sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-899X
DOI: 10.1088/1757-899x/1012/1/012007